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Abstract 

Chaos  theory  refers  to  the  behaviour  of  certain  deterministic  nonlinear  dynamical  systems  whose solutions,  although  globally  stable,  are  locally  unstable.  These  chaotic  systems  describe  aperiodic, irregular,  apparently  random  and  erratic  trajectories,  i.e.,  deterministic  complex  dynamics.  One  of the properties that derive from this local instability and that allow characterizing these deterministic chaotic  systems  is  their  high  sensitivity  to  small  changes  in  the  initial  conditions,  which  can  be measured  by  using  the  so-called  Lyapunov  exponents.  The  detection  of  chaotic  behaviour  in  the underlying  generating  process  of  a  time  series  has  important  methodological  implications.  When chaotic  behaviour  is  detected,  then  it  can  be  concluded  that  the  irregularity  of  the  series  is  not necessarily random, but the result of some deterministic dynamic process. Then, even if such process is unknown, it will be possible to improve the predictability of the time series and even to control or stabilize  the  evolution  of  the  time  series.  This  article  provides  a  summary  of  the  main  current concepts and methods for the detection of chaotic behaviour from time series. 
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Nota metodológica sobre la teoría del caos y las nuevas aplicaciones basadas en los recientes recursos computacionales 



Resumen 

La teoría del Caos se refiere al comportamiento que muestran ciertos sistemas dinámicos no lineales deterministas  cuyas  soluciones,  aunque  globalmente  estables,  resultan  localmente  inestables.  Estos sistemas  caóticos  describen  trayectorias  aperiódicas,  e  irregulares,  aparentemente  aleatorias  y erráticas, esto es, una dinámica compleja determinista. Una de las propiedades que se derivan de esa inestabilidad  local  y  que  permiten  caracterizar  a  estos  sistemas  caóticos  deterministas  es  su  alta sensibilidad a los pequeños cambios en las condiciones iniciales, que puede medirse mediante el uso de  los  denominados  exponentes  de  Lyapunov.  La  detección  de  comportamientos  caóticos  en  el proceso subyacente generador de una serie temporal tiene importantes implicaciones metodológicas. 

Cuando  se  detecta  comportamiento  caótico,  entonces  se  puede  concluir  que  la  irregularidad  de  la serie  no  es  necesariamente  aleatoria,  sino  el  resultado  de  algún  proceso  dinámico  determinista. 

Entonces, aunque dicho proceso sea desconocido, será posible mejorar las predicciones de la serie temporal  e  incluso  controlar  o  estabilizar  la  evolución  de  dicha  serie  temporal.  Este  artículo proporciona  un  resumen  de  los  principales  conceptos  y  métodos  actuales  para  la  detección  de comportamientos caóticos a partir de series temporales. 

 Palabras  Clave:   Teoria  del  Caos,  Dinámica  compleja,  detección  comportamiento  caótico, exponentes  Lyapunov, series de tiempo no lineales. 
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Introduction  



Chaos  theory  has  been  considered  as  the  third  greatest  discovery  on  Science  after Relativity and  Quantum  Mechanics in  the twentieth  century. The term chaos has been hailed  as  a  revolution  of  thoughts  and  attracting  the  ever  increasing  attention  of  many scientists  from  diverse  disciplines  including  mathematics,  statistics,  data  science, physics,  cosmology,  computation,  engineering,  chemistry,  biology,  medicine, neurology,  psychology,  economics  and  many  others.  It  has  become  a  truly  multi-disciplinary  area  of  research,  and  even  has  captured  the  imagination  of  the  general public. 

Traditionally the study of a phenomena with a complex and irregular evolution has  been  carried  out  assuming  that  the  underlying  dynamic,  which  generates  this complexity, should be represented through stochastic processes. This approach has been propitiated, in part, because the solutions from deterministic systems (perfectly regular, ordered and periodic) were incapable of reproducing the complex dynamics observed in real phenomena. In fact, the maximum degree of complexity that deterministic systems could describe was restricted to quasi-periodic movements. 

Nowadays,  it  is  generally  accepted  that  some  simple  deterministic  dynamic systems  can  generate  aperiodic,  complex  and  irregular  solutions.  These  dynamic systems are known as  chaotic systems, that are nonlinear deterministic dynamic systems which can behave with an apparently erratic and irregular motion, see Fig 1. 



Figure 1. Evolution of a pure random noise and a chaotic (deterministic) noise In this sense a challenging question in chaos theory from a statistical perspective would be  how  to  differentiate  chaotic  motions  from  purely  random  fluctuations.  How  to distinguish whether an apparently erratic, non-regular and aperiodic dynamic system is random or chaotic. 

In  order  to  be  able  to  detect  chaotic  behavior,  we  must  first  be  able  to characterise a chaotic dynamic system in some  way.   We will dedicate  the following section  to  this  issue.  On  the  other  hand,  it  is  also  interesting  to  understand  the epistemological implications of the detection of chaotic behavior in a system or a time series. We will devote the rest of this chapter to this other aspect. 
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The pursuit of an operational definition of chaos 



Generally  speaking,  there  are  several  definitions  of  deterministic  chaos  that  are commonly  in  use,  for  a  review  see  e.g.,    Li  and  Yorke  (1975),  Katok  (1980),  Berge (1984), Ford (1986), Shuster (1988), Devaney (1989), Ruelle (1993)  or  Brown (1996). 

As far as we know all definitions of chaos provided by those authors suffer from some defects but the most serious is that some definitions cannot be derived from each other. 

It  is  almost  impossible  to  give  a  precise  definition  of  chaos  which  at  the  same  time encapsulates all that the term implies in the diverse literature. Therefore we will adopt an operational approach in order to characterise a chaotic dynamic system based on the study of its local stability, which plays a crucial role in the dynamics behind the system. 

There are many approaches for the measurement and definition of the stability of a system in the literature. We will use the concept of local stability in a Lyapunov sense. 

This is a local definition of stability that measures the behaviour of a system inside its attractors.  An  attractor  or  attracting  set  is  the  dynamic  equilibria  of  the  system.  In essence, an invariant set under the action of the dynamic system, non-reducible and with a basin of attraction. That is, the subset of the state space to which the trajectories of the system converge after a transient time, a region in which the system is trapped, without getting out of it except by exogenous perturbation, and a set that cannot be decomposed in other invariant disjunct subsets. 





Fig 2. Illustration of simple and complex dynamics equilibria: Fixed point and limit cycle 
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Deterministic  dynamical  systems  can  have  different  types  of  dynamic  equilibria,  i.e. 

different  types  of  attractors  (see  Fig  2  and  Fig  3),  mainly  simple  dynamics  equilibria (fixed point; periodic points or limit cycle; quasi-periodic limit cycle or limit torus); and complex  dynamics  equilibria  (strange  or  fractal  attractors).  Precisely,  the  dynamic simplicity  or  complexity  of  these  equilibria  is  defined  according  to  the  stability  of  the trajectories within these attractors. 

The  stability  of  the  system,  following  this  ‘local  Lyapunov  approach,’  will  be determined  by  the  growth  rate  of  divergence  (or  convergence)  of  two  initially  nearby trajectories. The smaller the magnitude of this divergence, the greater the simplicity of the system dynamics. In stable systems, with simple dynamics, two initially close points will  always  evolve  close  to  each  other.  This  type  of  stable  system  provides  very accurate predictions of the future evolution or trajectories of the system. 



Fig 3. Illustration of simple and complex dynamics equilibria: quai-periodic limite cycle and strange Attractors 
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On the contrary, some dissipative nonlinear deterministic system (chaotic), even though they  have  a  global  attractor,  are  locally  unstable.  A  chaotic  system  with  two  initial values,  no  matter  how  close  they  are  to  each  other,  will  lead  to  drastically  different orbits  or  trajectories.  In  this  sense,  the  dynamic  equilibria  cannot  be  a  fixed  point, periodic  point,  limit  cycle,  quasi-periodic  limit  cycle  nor  a  limit  torus.  This  local instability  led  to  complex  dynamics  and  to  an  operational  definition  of  chaotic dynamics: the dynamics  described by a (nonlinear) system that converge to a  dynamic equilibria or attractor (a strange attractor), but whose trajectories within this attractor are unstable, irregular, aperiodic and complex. 

This  feature  of  chaos  emergeS  because  the  strange  attractors  are  both  a  finite region  of  the  state  space  but  conformed  by  an  infinite  number  of  points  (has  a  fractal structure).  Points  that  the  system  sequentially  visits,  but  without  passing  through  the same point twice. That is, choatic dynamics describe trajectories with no regular finite period  (or  a  period  that  tends  to  infinity)  and  it  is  highly  unstable  (for  a  review  see Ruelle and Takens, 1971). 

Thus,  to  distinguish  simple  dynamics  from  complex  dynamics,  that  is,  to distinguish periodic (or quasi-periodic) attractors from strange attractors, it is sufficient to analyse the instability of the system in its evolution within these dynamic equilibria. 

And to study this local stability we refer to the so-called  Lyapunov exponents. 

As mentioned above, the Lyapunov exponents measures how fast a perturbation in a state moves down the trajectory in a finite number of steps. That is, the Lyapunov exponents  give  (logarithm  of)  the  average  exponential  rate  of  divergence  of  two infinitesimal nearby initial conditions on the attractor. There will be as many exponents (spectrum  of  exponents)  as  there  are  dimensions  on  the  dynamic  system.  The  sign  of Lyapunov exponents (i) measure the divergence (i >0) or convergence (i <0) of two initial infinitesimally nearby orbits in each of the dimension of the phase space. 

This  interpretation  of  the  stability  of  the  dynamic  equilibria  coincides  exactly with  the  definition  of   sensitivity  to  initial  conditions.  Then,  we  can  use  the  Lyapunov exponents  for  quantifying  the  initial-value  sensitivity  of  two  neighboring  points.  To have a  chaotic behavior  in  a strange  attractor, and   sensitivity to  initial  conditions,  it is necessary to have almost one positive Lyapunov exponent (for a review see  Gencay and Dechert, 1992). 

E.N.  Lorenz  was  the  first  to  show  empirically  this  notion  of  initial-value sensitivity  in  his  paper   Deterministic  Non-periodic  Flow  (1963).  In  that  paper  he derived a nonlinear system for thermal convection in a simplified model of atmospheric 
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flow  and  noticed  a  very  strange  behavior:  the  solutions  of  the  equations  could  be unpredictable  and  irregular  despite  being  deterministic.  In  particular,  what  he discovered was that if he stopped of iterate the solutions of his dynamic system and did it  again  start  from  a  very  similar  initial  condition,  the  solutions  would  immediately separate. It is written as a novel in his book  The Essence of Chaos (1994). The sensitive dependence of the evolution of a system for an infinitesimal change of initial conditions is called popularly the  butterfly effect. Most authors have recognized this feature as the primary source of chaos. 

The  fact  that  a  dynamic  system  shows  sensitivity  to  initial  conditions  is  a necessary  but   not  sufficient  condition  for  chaos   per  se.  It  is  also  necessary  that  the evolution of the solutions is bounded in some region of the state space. That is to say, the  orbits  must  stay  on  an  attractor.  This  last  condition  is  always  verified  when  the dynamic  system  is   dissipative.  In  a   conservative  system,  the  volume  of  a  given  set  is preserved in the finite-dimensional phase space under the action of the system over time while  in  a  dissipative  one,  the  system  state  shrinks  or  reduces  asymptotically  to  a compact set. That is, it converges over time towards an attractor set. Hence in order to guarantee that the sensitive dependence on initial conditions property becomes  sufficient condition for the existence of chaos, it is necessary that the evolution of the solutions is limited in some region ( global boundedness). 

To sum up, chaotic dynamical systems are those converging to locally unstable strange  attractors  having  a  high  sensitivity  to  initial  conditions.  However,  this  is  still some  distance  from  a  rigorous  definition  of  chaos,  and  we  are  not  aware  of  any universally  agreed  definition.  As  we  said  before  it  appears  that  for  any  definition  of chaos, there may always be some chaotic systems which do not fall under some of them. 

Thus,  making  chaos  a  twin  to  Gödel's  undecidability.  So  far  as  this  dissertation  is concerned, we have considered convenient and relevant to concentrate our attention on two  features  following   Giannerini  (2002):  a  deterministic  dynamical  system  is  said  to be   chaotic  if  satisfies  the  following  properties:  (i)  global  boundedness  (the  dynamic system  is   dissipative  and  converge  to  an  attractor);  (ii)  initial-value  sensitivity  in nearby  trajectories,  that  is,  at  least  one  Lyapunov  exponent  is   positive  (the  dynamic system converge a  strange attractor). 

 

 

Chaos detection from time-series data 



Once  we have established how to  characterise  a  chaotic behaviour, we can proceed to present  techniques  to  detect  a  chaotic  signal  from  time-series  data.  According  to  the above definition of a chaotic system (it must be dissipative or convergent to an attractor, and  with  sensitivity  to  initial  conditions),  we  can  use  Lyapunov  exponents  to  check when  a  time  series  comes  from  a  chaotic  system.  As  the  Lyapunov  exponents  (i) measure  the  divergence  (i  >0)  or  convergence  (i  <0)  of  the  system  in  each  of  the dimension  of  the  phase  space,  we  can  use  the  sum  of  all  the  Lyapunov  exponents spectrum values to check if the system is dissipative (when the sum is negative, ie.  i 

<0); and we can use the sign of the  largest Lyapunov exponent to check for initial-value sensitivity ( max >0). 

As we have already mentioned, one of the properties of chaotic systems is that, although they are perfectly deterministic, they display complex dynamics. That is, they describe  irregular,  aperiodic  and  erratic  behaviour,  almost  indistinguishable  of  a  pure random  stochastic  process.  Contrary  to  chaotic  systems  the  processes  that  generate purely  random  trajectories  are  neither  dissipative  (they  tend  to  fill  the  entire  phase 58 
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space)  nor  do  they  have  any  positive  exponent.  Then,  we  can  also  use  the  Lyapunov exponents  to  know  whether  an  apparently  random  trajectory  describing  erratic  and aperiodic behaviour,  comes in  fact  from  a purely  stochastic system or whether, on the contrary,  it  comes  from  a  system  that,  at  least  in  part,  presents  deterministic  chaotic behaviour ( i <0 and  max >0). 

Note,  therefore,  that  the  key  to  detecting  chaotic  behaviour,  versus  purely stochastic  behaviour  or  versus  a  deterministic  system  of  simple  dynamics  (or  any combination of  both), lies in  the estimation  of the  Lyapunov  exponents  of the system. 

When  a  dynamic  system  is  known  we  can  directly  calculate  analytic  (or computationally) the full spectrum of the Lyapunov exponent value using or simulating the  dynamic  system.  However,  when  we  do  not  know  the  analytical  expression  of  the system that generates an observed time series, is it possible to estimate their Lyapunov exponents?  that  is,  can  chaos  be  detected  when  we  assume  that  the  true  underlying dynamic system generating the observed time series is unknown? 

The  empirical  analysis  of  chaotic  dynamic  systems  is  based  on  the  study  of observed time series. The main objective of this empirical analysis is precisely to obtain or to infer information about the properties of the data-generating process (deterministic or  stochastic)  that  in  most  cases  will  be  unknown.  That  is,  the  objective  is  to  know whether the underlying  generator system of  a time-series data presents  either a simple dynamics, behaves chaotically or comes from a purely stochastic process. 

As  the  true  data-generating  process  is  unknown  it  is  not  possible  to  know  the functional form that generates the dynamics associated with it.  Instead, we assume the existence  of  an  unknown   observer  function   which  transforms  the  unobserved  state variable  of  the  system  into  an  observed  time  series  data.  Then  it  is  assumed  that  all information available is a sequence of scalars, a univariate time series. As the true data-generating  process  is  unknown,  it  is  not  possible  to  consider  the  true  orbit  of  the dynamic system in the original state space. Nevertheless, we are going to be able to get an approximation (reconstruction) of the true underplayed unknown system that results equivalent  in  a  topological  sense.  We  mean  equivalent  in  its  dynamic  and  geometric properties (e.g., local stability of their attractors). This is an important result in chaos theory proposed by  Takens (1981). 

This  reconstruction  procedure  allows  us  to  obtain  all  the  relevant  information about  the  unknown  underlying  dynamic  system  that  generates  the  time-series  data ( invariant  properties)  like  the  Lyapunov  exponents.  Hence  the  Lyapunov  exponents must  have   approximately  the  same  value  in  both  the  true  and  the  reconstructed  state space.  Then  we  can  test  the  hypothesis  of  chaos  in  the  unknown  original  dynamic system by using the Lyapunov exponents estimated with the reconstructed attractor. 

Any  method  for  estimating  the  Lyapunov  exponent  from  time-series  data  are based  on  that   state  space  reconstruction   procedure.  Let  us  explain  briefly.  The underlying idea in this reconstruction is to make copies of the single observable signal and consider those delayed values as coordinates of a reconstructed state space obtained from the time series. So, we must form a sequence of delayed coordinate embedding vectors1. 

Once we have reconstructed the attractor, we want to quantify the initial-value sensitive  property  estimating  the  Lyapunov  exponents  from  time  series  in  order  to 1 More formally, let {𝑥 𝑛

𝑡}𝑡=1 be the time-series data. We can perform the state space reconstruction of the underlying system using the method of delayed-coordinates proposed by Ruelle and Takens (1971). This procedure constructs a sequence on time  t of delayed vectors in reconstructed state space ℝ𝑚: 

𝒙𝑚𝑡 = (𝑥𝑡,  𝑥𝑡−𝑙,  𝑥𝑡−2𝑙,  𝑥𝑡−3𝑙, . . . ,  𝑥𝑡−(𝑚−1)𝑙 )  

where  m is the embedding dimension and  l is the reconstruction time-delay (or lag). 
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understand  whether  the  unknown  data-generating  process  shows  a  simple  dynamic, behaved chaotically or resulted from a purely stochastic process. 

There  are  two  main  methods  in  the  literature  that  provide  the  estimated Lyapunov  exponent  from  time-series  data.  The  first,  the  so-called   direct  approach which  measures  the  growth  rate  of  the  divergence  between  two  trajectories  with  an infinitesimal difference in their initial conditions. The direct method was first proposed by   Wolf  et  al.  (1985),  and  then  revisited  by   Rosenstein  et  al.  (1993),  and  by   Kantz (1994). The underlying algorithm is explained in detail in  Kantz & Schreiber (1997). 

The main drawbacks of these direct methods are the followings. First, it does not allow the estimation of the full spectrum of  Lyapunov exponents just the largest, and this precludes testing the existence of an attractor ( i <0). Second, it is not robust to the  presence  of  measurement  noise.  These  direct  estimators  assign  to  chaos  any divergence,  even  if  purely  random,  caused  by  the  measurement  error  itself  and  is therefore unable to distinguish when the irregular behaviour of a time series comes from purely  random  behaviour,  and  when  it  comes,  at  least  in  part,  from  a  deterministic chaotic system. Third, it does not have a satisfactory performance in detecting existing nonlinearities on time-series of moderate sample sizes. Fourth, theoretical results for its consistency and asymptotic distributions are not available at the present time. This is a great  disadvantage  from  a  statistical  perspective  since  there  is  then  no  possibility  of making statistical inferences regarding chaos2. 

The second type of method used for estimating the Lyapunov exponents is the so-called   indirect  or  Jacobian  approach.  These  indirect  methods  solve  all  the disadvantages  of  the  direct  methods  mentioned  previously.  The  idea  behind  this approach  can  be  summarised  briefly  as  follows.  Rather  than  measuring  directly  the growth rate of the divergence between two nearby trajectories, these methods measure indirectly the average separation rate of two trajectories by estimating the derivative or Jacobian  matrix  associated  with  the  reconstructed  phase  space  from  the  time  series. 

First, one must estimate the model that best approximates the dynamics of the system, and then calculate its partial derivatives to measure the instability of the system, i.e., to obtain the Lyapunov exponents. 

This indirect methodology was first proposed by  Eckmann and Ruelle (1985), which is based  on  nonparametric  regression  methods.  Further  contributions  focused  on  two different approaches. Firstly, those who used some lineal regressions, see e.g.,  Sano and Sawada  (1985),  Eckmann  et  al.  (1986),  Brown  et  al.  (1991)  or  their  extension  in  the form of polynomial regression proposed by  Lu and Smith (1997). The second approach was based on nonlinear regressions techniques following, see e.g.,  Dechert and Gencay (1992),  McCaffrey  et  al.  (1992),  Nychka  et  al.  (1992),  Whang  and  Linton  (1999), Shintani and Linton (2004)3. 

For  those  interested  in  these  techniques,  and  in  the  estimation  of  Lyapunov exponents the authors of this article have developed a novel R package called  DChaos to test the hypothesis of chaotic behavior from a time series  (see Sandubete and Escot 2021).  This library provides an interface for researchers interested in the field of chaotic 2 One way to overcome this problem is to make use of empirical approaches. In this sense, Giannerini and Rosa (2001) proposed  a  resampling  scheme  that  allows  us  to  get  the  confidence  interval  of  the  Lyapunov  exponent  estimator suggested by Kantz in a rigorous statistical way. 

3 This indirect approach states that exist a function   g : Rm  Rm such that 𝒙𝑚

𝑚

𝑚

𝑡 = 𝒈 (𝒙𝑡−𝑙). Where 𝒙𝑡  is the delayed 

reconstructed  vectors.  Under  the  assumption  that  the  embedding  is  a  homeomorphism,  the  map   g  is  topologically conjugate to the unknown dynamic system  f, and then the estimation of Lyapunov exponents of  g are equivalent to the underlaying  of   f  .  The  different  indirect  approach  try  to  estimate   g   using  different  regressions  approaches  (see Sandubete and Escot, 2021). 
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dynamic systems and nonlinear time series analysis and professors (and students) who teach  (learn)  courses  related  to  those  topics.  The   DChaos  package  contains  some algorithms for detecting chaos from time-series data through the Lyapunov exponents by  various  computational  methods  based  on  the  Jacobian  indirect  methods.  It  also allows  making  statistical  inferences  about  its  statistical  significance,  thus  having  a formal  test  to  contrast  the  chaotic  hypothesis  from  time  series.  These  algorithms  are publicly  available  at  the  Comprehensive  R  Archive  Network  https://cran.r-project.org/web/packages/DChaos/. 





 Implications of finding chaos in a time series. 

The estimation of a positive exponent indicates that, although nonlinear and chaotic, the unknown  generating  process  has  a  deterministic  behavior,  a  time  dependence,  and  a time feedback. This finding has three important implications in epistemological terms. 

First, if we know that there is a unknown deterministic system that is generating the time  series,  as  opposed  to  pure  randomness,  we  should  try  to  put  all  our  efforts  in finding out what exactly is this unknown generating system. And perhaps a necessary step  in  this  direction  would  be  to  move  away  from  the  simplifying  hypothesis  of linearity and explore possibilities using nonlinear dynamic models. 

But even if we are not able to know what this generating system might be, it is still possible to advance in two other important aspects:  prediction and control of the system.  In fact, the second implication of detecting chaotic behavior in a time series is that  there  is  room  to  try  to  improve  their  predictions,  at  least  in  the  short  term.  The existence of a positive Lyapunov exponent reveals the existence of time dependence in the time series, and therefore we can improve the predictive possibilities of the future by looking into the past, at least within the limits established by the sensitivity to the initial conditions. But to do this we have to move  away  from traditional (essentially linear) stochastic  prediction  models  and  use  the  techniques  derived  from  chaos  theory.  These techniques  do  not  require  knowledge  of  the  time  series  generating  system.  They  are based  on  exploiting  time  dependence,  recurrence  and  the  existence  of  attractors  in  the reconstructed  phase  space  (again  using  Takens'  theorem).  They  do  not  try  to  fit  a (linear)  model  to  the  data.  Basically,  these  techniques  search  in  the  past  for  patterns similar  to  the  present  in  order  to  predict  the  future.  These  predictions  by  analogues methods were proposed initially by Lorenz (1963, 1969) and developed by Farmer and Sidorowich  (1987,  1988)  and  Casdagli  (1989)  who  can  be  considered  pioneers  at  the early stage of developments in predicting complex time series. 

The third implication of chaos detection lies in the possibility of controlling or stabilizing  the  behavior  of  the  time  series.  Again,  a  control  that  is  performed  even without  determining  the  dynamical  system  that  is  generating  the  time  series.  Chaos control techniques, such as those initially proposed by Ott, Gregobi, and Yorke (1990) are based on the fact that when a nonlinear deterministic dynamical system exists, even if it is unknown, it can be forced towards one of its multiple stationary equilibria, even if these equilibria are initially unstable. Any fixed point can be reached without the need to force the system aggressively, simply by applying small perturbations that lead the system towards these stationary equilibria. With slight variations in the values of any control parameters (some parameter that one may discretionally alter) it is possible to change the dynamic equilibrium (the attractor),  eliminating the irregularity of chaotic solutions,  stabilizing  irregular  behaviors  (when  they  are  unwanted).  This  requires 

 © 2019 ENERGEIA. Esta obra está bajo una licencia CC BY NC 4.0 Internacional 61 



 A brief methodological note on chaos theory and Lorenzo Escot 

 its 



 recent applications based on new computer 

  Julio E. Sandubete G. 

removing the system from the strange attractor, leading it to periodic equilibria (fixed points or limit cycles) and applying control rules to keep the system stabilized in those periodic  equilibria.  This  type  of  control  or  stabilization  would  not  be  possible  if  the system  were  purely  random,  because  it  is  based  on  the  existence  of  a  deterministic dynamic system, which, although unknown, is generating the observed time series. 

 

 

Conclusion  

Chaotic  dynamical  systems  do  not  close  the  age  old  debate  on  determinism  and indeterminism,  which  is  still  alive  today.  At  best,  it  opens  a  new  fuzzy  boundary between  the  two  paradigms.  The  theory  or  mathematics  of  chaos  provides  tools  of analysis  that  situate  us  between  formal  determinism  and  asymptotic  indeterminism. 

Formal  determinism  because  chaotic  systems  are  perfectly  deterministic  (but algebraically  nonlinear)  dynamical  systems,  which  do  not  include  any  stochastic component or element in their formulation. And asymptotically indeterministic because in  spite  of  not  including  any  purely  random  effects,  they  present  an  irregular  and aperiodic noisy behavior. This noisy chaos shows a high sensitivity to initial conditions (the so-called butterfly effect) that makes IT impossible to obtain tight predictions of the future  state  of  the  system  beyond  the  short  term.  Indeed,  even  if  we  know  the deterministic dynamical system generating a time series (which drives the evolution of the system in time), when there is chaotic behavior, small, very small variations in the initial point of prediction (due for example to measurement errors) mean  that beyond the very short term the predictions are exponentially separated. Therefore, in practice, either one knows with infinite precision the true initial state of the system, or it is not possible to make accurate predictions of its future evolution. 

Nevertheless,  the  detection  of  chaotic  behavior  in  an  observed  time  series  has important  implications  in  terms  of  predictability  and  stabilization  of  the  time  series generating system, even if it is unknown. When a time series presents irregular behavior because  of  deterministic  chaotic  behavior,  then  we  can  improve  its  prediction  by exploiting time dependence, and we can control it in stable values by taking advantage of the existence of attractors or dynamic equilibria.   And all this without needing to know the nature of the generating system. 

In practice, most economic time series present an irregular cyclical behavior, and in fact,  their  origin  is  unknown.  It  is  unknown  what  the  real  system  generating  the observed time series actually is. We do not know what is the real model that drives the evolution of the economy. It is crucial to know if this irregular behavior has a purely stochastic  origin  or  if,  on  the  contrary,  it  has  a  chaotic  origin.  Firstly,  because  the detection of chaotic behavior should make us rethink the use of linear modeling in most economic models. And secondly, because there are important implications in terms of prediction  and  control  of  the  economy  through  new  techniques  of  economic stabilization. 

Chaos theory takes us into the complex terrain between formal determinism and practical  indeterminism,  opening  a  whole  series  of  new  possibilities  and  new methodologies. Many of these techniques, although initially proposed in the middle of the last century, have not been fully developed until the present time. These techniques are resource intensive for algorithmic computing. The recent development of new online parallel computing resources and Big Data techniques will undoubtedly provide great advances in this area in the very near future. 
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BERGÉ, P., POMEAU, Y. & VIDAL, C. (1984). “L’Ordre dans le Chaos”. Hermann, Paris. 

BROWN, R. & CHUA, L. O. (1996). “Clarifying chaos: Examples and counterex- amples”. 

International Journal of Bifurcation and Chaos, vol. 6(02), pp. 219–249. 

BROWN,  R.,  BRYANT,  P.  &  ABARBANEL,  H.  D.  (1991).  “Computing  the  lyapunov spectrum of a dynamical system from an observed time series”. Physical Review A, vol. 43(6), pp. 2787. 

CASDAGLI,  M.  (1989)  “Nonlinear  Prediction  of  Chaotic  Time  Series”.  Physica  D,  35, 335-356. 
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LI, T.-Y. & YORKE, J. A. (1975). “Period three implies chaos”. American Mathematical Monthly, vol. 82, pp. 985–992. 

LORENZ,  E.  N.  (1963).  “Deterministic  nonperiodic  flow”.  Journal  of  the  Atmospheric Sciences, vol. 20(2), pp. 130–141. 

LORENZ, E. N.  (1969). “Atmospheric Predictability as Revealed by Naturally Ocurring Analogues”. Journal of  the Atmospheric Sciences. 

LORENZ, E. N. (1995). “The essence of chaos”. University of Washington Press. 

 © 2019 ENERGEIA. Esta obra está bajo una licencia CC BY NC 4.0 Internacional 63 



 A brief methodological note on chaos theory and Lorenzo Escot 

 its 



 recent applications based on new computer 

  Julio E. Sandubete G. 

LU,  Z.-Q.  &  SMITH,  R.  L.  (1997).  “Estimating  local  lyapunov  exponents”.  Fields Institute Communications, vol. 11, pp. 135–151. 

MCCAFFREY, D. F., ELLNER, S., GALLANT, A. R. & NYCHKA, D. W. (1992). “Estimating the  lyapunov  exponent  of  a  chaotic  system  with  nonparametric  regression”. 

Journal of the American Statistical Association, vol. 87(419), pp. 682–695. 

NYCHKA, D., ELLNER, S., GALLANT, A. R. & MCCAFFREY, D. (1992). “Finding chaos in noisy  systems”.  Journal  of  the  Royal  Statistical  Society:  Series  B  (Statistical Methodology), vol. 54(2), pp. 399–426. 

OSELEDEC,  V.  (1968).  “A  multiplicative  ergodic  theorem.  ljapunov  characteristic number  for  dynamical  systems”.  Transactions  of  the  Moscow  Mathematical Society, vol. 19, pp. 197–231. 

OTT, E., GREBOGI, C., & YORKE. (1990). “Controlling chaos”. Physical Review Letters. 

Vol. 64, No 11. 

ROSENSTEIN,  M.  T.,  COLLINS,  J.  J.  &  LUCA,  C.  J.  D.  (1993).  “A  practical  method  for calculating  largest  lyapunov  exponents  from  small  data  sets”.  Physica  D: Nonlinear Phenomena, vol. 65(1), pp. 117 – 134. 

RUELLE, D. (1993). “Chance and chaos”, vol. 11. Princeton University Press. 

RUELLE,  D.,  TAKENS,  F.  (1971).  “On  the  nature  of  turbulence”.  Communications  in Mathematical Physics, vol. 20(3), pp. 167–192. 

SANDUBETE, J. E. & ESCOT, L. (2021). “DChaos: Chaotic Time Series Analysis”, 2020. 

R package version vol 13 issue 1, 2021. 

SANO,  M.  &  SAWADA,  Y.  (1985).  “Measurement  of  the  lyapunov  spectrum  from  a chaotic time series”. Physical Review Letters, vol. 55(10), pp. 1082. 

SHINTANI,  M.  AND  LINTON,  O.  (2003).  “Is  there  chaos  in  the  world  economy?  a  nonparametric test using consistent standard errors”. International Economic Review, vol. 44(1), pp. 331–357. 

SHUSTER, G. (1988). “Determinirovannyi khaos (deterministic chaos)”. Moscow: Mir. 

TAKENS,  F. (1981).  “Detecting  strange  attractors  in  turbulence.  In  Dynamical  Systems and Turbulence”, Lecture Notes in Mathematics, pp. 366–381. Springer. 

WHANG, Y.-J. AND LINTON, O. (1999). “The asymptotic distribution of nonparamet- ric estimates  of  the  lyapunov  exponent  for  stochastic  time  series”.  Journal  of Econometrics, vol. 91(1), pp. 1 – 42. 

WOLF,  A.,  SWIFT,  J.  B.,  SWINNEY,  H.  L.  &  VASTANO,  J.  A.  (1985).  “De-  termining lyapunov  exponents  from  a  time  series”.  Physica  D:  Nonlinear  Phenomena,  vol. 

16(3), pp. 285 – 317. 

64 

 © 2019 ENERGEIA. Esta obra está bajo una licencia CC BY NC 4.0 Internacional 





index-2_1.jpg





index-4_1.jpg
\/!

e i

A [ \ /\‘\ /\
il

\
v

Trajectory

|
|

/|

\f
y

/|

I

{
[

|

| [
Voo

Limit cycle





index-3_1.jpg
Phase Space

Q Trajectory
,//L

e 3
time

Fixed Point





index-5_1.jpg
Strange Attractor





index-4_2.jpg
/ ) Phase Space
[
|

7E | /fl\}uuul’l‘f“!"w’\'ri}"”I'fl""{‘r”""” w

I

Quasi-Periodic Limit Cycle





